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Random quantum states are presently of interest in the fields of quantum information theory and quantum
chaos. Moreover, a detailed study of their properties can shed light on some foundational issues of the quantum
statistical mechanics such as the emergence of well-defined thermal properties from the pure quantum
mechanical description of large many-body systems. When dealing with an ensemble of pure quantum states,
two questions naturally arise, what is the probability density function on the parameters which specify the
state of the system in a given ensemble, and does there exist a “most typical” value of a function of interest
in the considered ensemble? Here, two different ensembles are considered, the random pure state ensemble
(RPSE) and the fixed expectation energy ensemble (FEEE). By means of a suitable parametrization of the
wave function in terms of populations and phases, we focus on the probability distribution of the populations
in these ensembles. A comparison is made between the distribution induced by the inherent geometry of the
Hilbert Space and an approximate distribution derived by means of the minimization of the informational
functional. While the latter can be analytically handled, the exact geometrical distribution is sampled by a
Metropolis-Hastings algorithm. The analysis is made for an ensemble of wave functions describing an ideal
system composed of n spins of 1/2 and reveals the salient differences between the geometrical and the
approximate distributions. The analytical approximations are proven to be useful tools in order to obtain an
ensemble-averaged quantity. In particular, we focus on the distribution of the Shannon entropy by providing
an explanation of the emergence of a typical value of this quantity in the ensembles.

1. Introduction
The characterization of thermodynamic properties and the

study of the dynamics of many-body quantum systems are
central issues of physical chemistry which should be treated
within a suitable statistical framework. The need for a statistical
approach to these long-standing problems can be understood
from various points of view. On a methodological ground, there
are no doubts that statistical methods are the right conceptual
tools to build the bridge between a pure (quantum) mechanical
description of complex systems and their characterization in
terms of thermodynamic quantities or relaxation behavior. Still,
from a more practical standpoint, one has to face the difficulties
in performing efficient numerical simulations of large quantum
systems due to the well-known exponential scaling of the
required computation resources with the system dimension.1

Moreover, although several schemes have been developed in
order to increase the quantum simulation performances,2-4 one
should also consider a more subtle difficulty which finds its
roots in some foundational aspects of the standard quantum
statistical mechanics.5,6 In particular, the following question
arises, how do statistical mechanics emerge from the underlying
quantum mechanical description? There is no obvious answer
to this question. Even if we could perform a simulation of a
large many-body quantum system in analogy to a classical
molecular dynamics experiment, there is not a straightforward
relation between the results of such a calculation, that is, the
time-dependent wave function of the isolated system, and the
standard quantum statistical description based on the statistical
density matrix. Of course, one could identify the latter quantity

with the time average of the instantaneous density matrix
determined by the wave function, but in such a case, it is not
clear why an evolving isolated system should necessarily leads
to the microcanonical statistical density matrix.7

Recently, the possibility of investigating single-molecule or
single-spin observables,8,9 as well as the necessity of a better
understanding of the mechanisms underlying quantum dynamics
in order to obtain nanoscale devices and nanostructered materials
suitable for quantum computing tasks,10-12 has revived the
interest in the foundations of quantum statistical mechanics.
Important contributions in this field13-15 invite one to look at
quantum statistical mechanics from a different standpoint. One
of the key ingredients of this new perspective consists of shifting
the focus from the ensemble averages of the traditional quantum
statistics back to the role and predictability of one single
realization of a system and its environment described by a
quantum mechanical pure state associated with a wave function.

Within this perspective, the concept of typicality16 as the key
to the emergence of standard statistical equilibrium behavior
has recently been discussed in various works.13-15 In its widest
meaning, the term typicality indicates that by selecting a set of
states on the basis of some conventional rules, one obtains a
very narrow distribution of some relevant features, which
become, actually, typical among those states. In particular, it
has been shown that a quantum subsystem which is part of a
much bigger system described by a pure state can be very likely
described by a typical reduced density matrix, which is the
canonical one under certain conditions.14 Nonetheless the
emergence of typical values for a large class of observables is
not restricted to a small subsystem, as discussed by Reimann
in ref 15.
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The main goal of the present contribution is the development
of methodologies for the study of statistical ensembles of
quantum pure states. These methodologies are useful tools for
the analysis of typicality not only of asymptotically large
systems but also for finite systems amenable to exact numerical
computations. They include the following items: (i) the deriva-
tion of the probability density (distribution) for ensembles of
quantum pure states on the basis of the geometrical measure in
the Hilbert space given a suitable parametrization of the wave
function, (ii) for a given probability density, the generation of
a numerical sampling of the ensemble, which allows one to
calculate the distribution of any property of the quantum system
and, in particular, to assess its typicality, and (iii) the derivation
of approximate probability distributions leading to a direct
calculation of the averages within the ensemble without the need
for the numerical sampling. We emphasize the importance of
the third item for the study of large quantum systems whose
characterization through numerical sampling is not feasible.
Obviously, the evaluation of typicality for asymptotically large
systems falls in such a category of problems. On the other hand,
a stronger confidence on the applicability of the invoked
approximations could derive from the comparison with the exact
numerical results for finite systems.

In the present paper, these new methodological tools will be
applied to two different ensembles of quantum pure states. In
the first one, we consider quantum pure states chosen at random
with respect to the uniform measure on the unit sphere in a
finite dimensional Hilbert space.17 They are a much studied
subject in the field of quantum information science since they
are a resource for a variety of quantum information protocols.18,19

For example, their entanglement properties have been studied
by many authors,20-23 and several schemes have been proposed
for generating them efficiently.24 Furthermore, ensembles of
random states have been previously considered in several studies
of the foundations of statistical mechanics.14,25,26 A statistical
sample of states drawn according to such a distribution will be
called the random pure state ensemble (RPSE).

In the second type of ensembles, the wave functions are
chosen at random but with the constraint of having a common
expectation value of some observable. We specifically consider
the case of fixed expectation value of the energy, but the
methodology used by us to obtain the corresponding probability
density is rather general, and it can be employed to generate
any ensemble of this kind.27 The statistical sample for such a
distribution will be denoted as the fixed expectation energy
ensemble (FEEE). This type of distribution has been recently
proposed as the quantum counterpart of the classical microca-
nonical ensemble.28-30

In order to test the capability of these methods to quantify
the typicality of a given observable, we shall explicitly consider
the Shannon entropy as an important collective property of the
quantum system. We emphasize, however, that the same
methods can be applied to any chosen property of the quantum
system.

In section 2, we introduce a suitable parametrization of the
wave function in terms of populations and phases and derive
the corresponding probability density from the inherent geometry
of the Hilbert space. In section 3, the distributions for the
considered ensembles are investigated by employing Monte
Carlo sampling techniques. Albeit we consider systems of
noninteracting spins for the sake of simplicity, the procedure
can be easily applied to arbitrary quantum systems. In section
4, we shall derive and discuss approximations of probability
distributions for the ensembles, which can be analytically

handled, and their validity can be assessed by comparison with
the Monte Carlo results.

2. Theory

2.1. Definition of the Ensembles. Before providing the
formal definition of the examined ensembles of pure states, it
is worth spending some words to clarify how the concept of
ensemble is intended in the following. By ensemble, we always
mean an abstract construction for the statistical sampling of the
possible pure states (each of them described by a wave function)
of an isolated quantum system. Once the states (wave functions)
have been properly parametrized, one can introduce the prob-
ability density with respect to these parameters, and the
ensemble becomes simply a realization for the statistical
sampling of the probability distribution.

A given isolated quantum system is characterized by its time-
independent Hamiltonian H, which defines the corresponding
eigenenergy (orthonormal) basis {ek, k ) 1, ..., N}, where N
denotes the dimension of the Hilbert space H of the system.
Here, we shall consider a Hilbert space of arbitrary large but
finite dimension. Thus, any wave function ψ in such a space
can be specified as the superposition of the eigenenergy vectors

The N-dimensional complex vector c ≡ (c1,c2, ..., cN) ∈ CN can
be written as a 2N dimensional real vector x ≡ (Re c, Im c) ∈
R2N, and in the latter representation, the norm of the state vector
is given as Euclidean norm

Thus, the R2N space “contains” all of the possible non-
normalized state vectors.

We define the RPSE as the set of normalized wave functions
which are uniformly distributed in the Hilbert space H of the
system. The normalization condition

defines, according to eq 2, a (2N - 1)-dimensional sphere
embedded in the (2N)-dimensional R2N space

For the set of pure states, there is a unique measure which is
invariant under all unitary transformations,17 in correspondence
to the uniform distribution over the S2N-1 unit sphere defined
above.

Recently, a generalized microcanonical ensemble has been
proposed,28,29 with the microcanonical energy identified with
the expectation value of the Hamiltonian

ψ ) ∑
k)1

N

ckek (1)

ψ ) √〈ψ|ψ〉 ) �∑
j

2N

(xj)2 (2)

〈ψ|ψ〉 ) 1 (3)

S2N-1 ) {x ∈ R
2N| ∑

j)1

2N

(xj)2 ) 1} (4)

E ) 〈ψ|H|ψ〉 ) ∑
k)1

N

Ekc
k (5)
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Ek being the kth Hamiltonian eigenvalue, Hek ) Ekek. We define
the FEEE in correspondence with the set of all of the normalized
wave functions in H, which are characterized by a given value
E of the expectation energy according to eq 5.

For the geometrical analysis of the previously defined
ensembles, it is convenient to introduce the following param-
etrization of the wave functions

where the complex coefficients of eq 1 are written in their polar
form. We shall refer to the absolute squares of the coefficients
as “populations”, Pk ≡ |ck|2, while the “phases” Rk are defined
as the inverse tangent of the ratio between the imaginary and
the real part of the coefficients, Rk ≡ tan-1(Im ck/Re ck). It should
be emphasized that in the space R2N, the set of populations is
not normalized, ∑k Pk * 1, unless ||ψ|| ) 1.

2.2. Probability Distribution on the Ensembles. In this
section, we shall sketch the derivation of the ensemble prob-
ability distributions on a chosen coordinate set which specifies
the wave function. The natural underlying assumption is that
the probability of a certain set of wave functions is proportional
to the measure of the set of their representative points in the
space where the ensemble is defined.

Let us start by recalling that in the R2N space, the state vector
has a Euclidean norm, eq 2, when the set of coordinates x ≡
(Re c, Im c) is used. Therefore, for such a representation, a
Euclidean geometry can be assumed with a unit metric tensor31

and the measure of any region is obtained by integration of the
elementary volume element dV ) dx ) dx1dx2...dx2N. The invari-
ance of the volume measure allows one to write the volume element
in arbitrary coordinates y ) (y1,y2, ..., y2N) as

where dy ) dy1dy2...dy2N and g(y) is the determinant of the metric
tensor gij(y) in the y representation

The explicit use of the metric tensor is convenient because it
permits determination of the proper volume element of any
surface embedded in the original Euclidean space.31 In general,
n conditions on the coordinates y of a 2N-dimensional space
define an hypersurface of dimension K ) 2N - n. In the
neighborhoods of any nonsingular point of the surface, one can
introduce a local set of coordinates z ) (z1, ..., zK) which
parametrically determines the location of a point on the surface,
yi(z) for i ) 1, 2, ..., 2N. The metric tensor induced on the surface
is then given by

where k,k′ ) 1, ..., K. Once the metrics on the surface is known,
like in eq 8, one can specify the corresponding volume element
as dV ) |g(z)|1/2 dz with dz ) dz1dz2...dzK.

Since both ensembles, RPSE and the FEEE, are defined by
constraints which define hypersurfaces embedded in the R2N

space, one can apply the above-mentioned scheme to obtain
the corresponding volume element dV. Then, because of the
assumed proportionality between the probability that the state
vector belongs to a given set and its geometrical measure, one
can specify the probability density p(z) with respect to coordi-
nates z according to the relation

where the normalization is calculated as the total volume of
the set D for the allowed pure states. In this way, from the
measure, one derives the probability density of the surface points

The representation of the R2N space by means of populations
and phases, y ) (P,R), where P ) (P1,P2, ..., PN) and R ) (R1,R2,
..., RN), is particularly convenient since the constraints of state
vector normalization eq 3 and fixed expectation energy eq 5
involve populations only

This implies that the set of populations is statistically indepen-
dent of the phases and also that each phase variable is
characterized by a uniform distribution in the corresponding
definition domain [0,2π) (see Appendix A for the details). Thus,
the probability density on the populations P and phases R can
be factored as

For the RPSE, only the condition in eq 13 has to be
considered, and thus, one can use all of the set of phases R and
the (N - 1)-independent populations P ) (P1, ..., PN-1) as
coordinates z on the corresponding surface. Appendix A
describes in detail the calculation of the determinant g(z) of
the metric tensor leading to the following RPSE probability
density on the populations

The set of populations which characterizes wave functions
in the FEEE has to satisfy both eqs 13 and 14. If the two
constraints are used to determine the populations PN and PN-1,
then as described in Appendix A, one derives the following
explicit form for the probability distribution

ψ ) ∑
k)1

N

√Pk exp[iRk]ek (6)

gij(x) ) δij (7)

dV ) √|g(y)|dy (8)

gij(y) ) ∑
i',j')1

2N
∂xi'

∂yi
gi'j'(x)

∂xj'

∂yj
) ∑

j')1

2N
∂xi'

∂yi

∂xi'

∂yj
(9)

gkk'(z) ) ∑
ij)1

2N
∂yi

∂zk
gij(y)

∂yj

∂zk'
(10)

p(z)dz ) dV

∫D
dV

(11)

p(z) )
√|g(z)|

∫D
√|g(z)|dz

(12)

∑
k

Pk ) 1 (13)

∑
k

PkEk ) E (14)

p(P,R) ) p(P)p(R) ) p(P)/(2π)N (15)

pRPSE(P1, ..., PN-1) ) (N - 1)! (16)
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with coefficients aj ) (EN-1 - Ej)/(EN - EN-1) and the constant
C determined by the normalization of the probability density.

By using the ensemble distribution, eq 15, with the corre-
sponding probability density on populations, eq 16 or 17, one
can obtain in principle the ensemble average of any function
of a quantum state a(|ψ〉) ) a(P,R)

as well as the average of its higher moments

Among the possible functions, one can include the expectation
value a ) 〈ψ|A|ψ〉 of an operator A defined in the Hilbert space.
It should be emphasized that, if these averages are available,
then one can quantify the typicality of a property described by
a real function a(P,R) by examining its variance

In conclusion, for the two types of ensembles introduced here,
we have derived the corresponding probability distributions,
which in principle allow the calculation of the average of any
property and characterization of the typicality as well. This,
however, requires the evaluation of multidimensional integrals
that rarely can be performed directly. Therefore, in order to
characterize the statistical behavior of a property within an
ensemble, one has to introduce a suitable approximation of the
probability distribution that allows an analytical estimate of the
averages or to perform a statistical sampling for the given
probability distribution. The first route will be tackled in section
4, while in the next section, we address the issue of the statistical
sampling. Albeit the procedures we present are general enough
to analyze the typicality of any property, in order to provide
specific examples of their application, we shall consider the
following entropy function

It corresponds to the Shannon entropy in the energy representa-
tion, which is usually interpreted as a measure of the lack of
information about the outcome of the measurement of the
energy. In the present framework, we do not consider the
measurement process, so that the function in eq 21 is rather
interpreted as a measure of the degree of disorder of a quantum
pure state in relation to its decomposition into the Hamiltonian
eigenstates. In particular, a vanishing entropy would be recov-
ered only for a stationary state, ψ ∝ ek, for a given eigenstate
ek. It should be noted that several theoretical entropy measures
for quantum systems have been discussed in the literature;32-34

nonetheless, the issue of the relation between such informational

measure and the thermodynamic entropy is still the subject of
a lively debate and active research.35-38

3. Monte Carlo Ensemble Sampling and Typicality

We shall employ Monte Carlo sampling techniques in order
to draw a statistical sample of population sets and study the
corresponding ensemble distributions of the populations and of
the entropy function eq 21. Ensembles of spins are convenient
systems for investigations of quantum statistical behavior since
one has to consider a finite dimensional Hilbert space. This kind
of model systems is the subject of a continuously increasing
attention either from a theoretical11,39 or an experimental
perspective8,9,40 because it represents the natural test bed for
quantum information protocols. We thus consider a system
composed of n noninteracting 1/2 spins, each spin having its
Zeeman frequency ωk, so that the total number of states of the
system is N ) 2n.

3.1. Population and Entropy Distribution in the RPSE.
In order to study the RPSE, one has to draw samples from the
uniform probability distribution on the N - 1 simplex, eq 16,
of the populations. The problem can be solved by introducing
an auxiliary set of variables � ≡ (�1, ..., �N-1) uniformly
distributed in (0,1]. It is easily shown26,41 that the set of
populations calculated as

is a realization from the RPSE distribution, eq 16. This allows
one to efficiently generate a statistical sample of the population
set for the RPSE and thus the corresponding distribution of the
entropy through the definition in eq 21.

Figure 1 shows the marginal distribution of a single popula-
tion obtained as a (normalized) histogram of the statistical
sample numerically generated from the geometrical distribution,
eq 16. It should be evident that RPSE, whose probability
distribution is invariant with respect to the exchange of
population variables, does not privilege any population and,
therefore, leads to the same marginal distribution for all of the
populations. It is also clear that an increase of the number of
spins moves the marginal distribution to lower values of the
population variable. This is a direct consequence of the
dependence of the average population 〈Pk〉 ) 1/N on
the dimension N of the Hilbert space, simply deriving from the
population normalization. A less obvious behavior which
appears evident from the diagrams of Figure 1 is that the
population distribution has a width σPk

always comparable to
the population average 〈Pk〉. Such a feature, which will be
rationalized in section 4, brings the conclusion that within RPSE,
the populations do not display typicality.

On the other hand, from the standard quantum statistical
mechanics, one has the intuition that at least some functions of
the state of the system, such as the entropy, should not depend
on the details which specify the state, that is, on a particular
choice of the population set but only on “gross properties” of
the quantum state. In Figure 2, the ensemble distribution of the
entropy per spin, that is, S/n, for systems composed of different
numbers of spins is reported. The histograms resulting from
the sampling are well fitted by Gaussian distributions. In the
inset of the figure, the standard deviations of the fitting

pFEEE(P1, ..., PN-2) )
1
C[ ∑

j)1

N-2

Pj(1 + aj)aj -

( E - EN-1

EN - EN-1
)2

+ ( E - EN-1

EN - EN-1
)]1/2

(17)

〈a〉 ) ∫D
a(R, P)p(R, P)dPdR (18)

〈an〉 ) ∫D
a(R, P)np(R, P)dPdR (19)

σa ≡ √〈a2〉 - 〈a〉2 (20)

S ) - ∑
k)1

N

Pk ln Pk (21)

P1 ) 1 - �1
1/(N-1), ......, PJ ) (1 - �J

1/(N-J)) ∏
i)1

J-1

�i
1/(N-i), ......,

PN ) ∏
i)1

N-1

�i
1/(N-i) (22)
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distributions are reported as a function of the number of spins
in the system.

The main point which emerges from these calculations is the
existence of a typical value of the entropy per spin in the

considered ensemble of pure states. Indeed, as the number of
spins increases, the entropy distribution becomes a sharper and
sharper function peaked around a typical value which can be
identified with the average entropy. Such a property, which is
called typicality, has been recently used to explain the emer-
gence of the canonical state for a subsystem which is part of a
much bigger system described by a pure state.13,14 Reimann15

has proven that under certain hypotheses, the property of
typicality also holds for the expectation value of a generic
observable. Our results on the RPSE distribution of the entropy
have to be interpreted as evidence of the property of typicality.
In other words, as the size of the system increases, the vast
majority of the different pure states which belong to the RPSE
are characterized by nearly the same value of the entropy
function even if each of them is defined by a different set of
populations.

3.2. Population and Entropy Distribution in the FEEE.
For studying the FEEE, we need to generate a statistical sample
from the probability density eq 17. Since the normalization
constant is unknown and we deal with a multivariate probability
distribution, the use of a Markov chain becomes convenient.
Our sampling of the FEEE has been performed by means of a
Metropolis-Hastings algorithm.42,43 In particular, a random walk
updating scheme44 has been implemented.7

The algorithm is basically made up by the following steps:
(1) Start at an arbitrary point X which belong to the domain

of the target distribution pFEEE(P1, ..., PN-2), with pFEEE(X) > 0.
(2) Generate a random variable Y from an arbitrary but fixed

proposal distribution q(X,Y); this represents a proposed move
from the state X to the state Y. In the random walk updating
scheme, the proposed new value Y equals the current values X
incremented by a random variable Z, Y ) X + Z. In this case,
q(X,Y) ) g(Y - X) ) g(Z) is the probability density associated
with the random variable Z. We have used the multivariate
Gaussian distribution

where Σ is the covariance matrix. A diagonal covariance matrix
is used, with each entry proportional to the average populations
calculated on the basis of the approximate distributions intro-
duced in section 4

where the λ and µ parameters are defined in eq 36. The variance
of the proposal distribution can be thought of as a set of tuning
parameters to be adjusted to get an optimal sampling of the
target distribution.

(3) Calculate what can be termed the probability of move

(4) Generate a random variable u uniformly from [0,1]. If u
< R, accept the proposal and move to state Y; otherwise, reject
the proposal and remain in X, to be considered as the new
sample. Repeat 1-4.

In order to determine the FEEE target distribution, one has
to specify the energy spectrum of the considered system. Let
|M〉 ) |m1

Mm2
M...mn

M〉 be an eigenenergy state of the system

Figure 1. Marginal distribution of a population in the RPSE: the
(normalized) histograms refers to the statistical sample of 105 points
(in 30 bins) generated by the algorithm described in the text for a system
composed of n ) 2, 3, and 4 spins respectively. The continuous lines
represent the exponential distribution, eq 29, discussed in section 4.1.

Figure 2. Distribution of the entropy per spin S/n for different numbers
of spins as obtained by numerical sampling (105 sampled points) of
the RPSE distribution of systems composed of n ) 11, 13, and 15
spins as indicated in the figure. In the inset, the standard deviation of
the fitting Gaussian distributions is reported as a function of the number
of spins which constitute the system.

g(Z) ) 1

(2π)N/2(det Σ)1/2
exp[-1

2
ZTΣ-1Z] (23)

Σkk' ∝ δkk'(λ + µEk)
-1 (24)

R(X, Y) ) min[1,
pFEEE(Y)

pFEEE(X)] (25)
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composed of n noninteracting 1/2 spins. Thus, the corresponding
energy is given as EM ) ∑k)1

n pωkmk
M, where mk

M ) -1/2 and
ωk is the Zeeman frequency of the kth spin. We have to study
the distribution of the populations and that of the entropy as a
function of the expectation energy E ) ∑M)1

N PMEM. In practice,
it is convenient to employ the energy per spin ε ) E/n as the
only independent parameter which defines the FEEE of a given
system. For the sake of simplicity, the distributions reported
here refer to a system of n identical spins, that is, ωk ) ω0 for
all k; however, it has been verified that the general features of
resulting distributions do not depend on such a particular
assumption. In the following, pω0 will be used as the energy
unit, and we conventionally set the zero of the energy scale in
correspondence to the ground state, that is, E1 ) 0. Figures 3
and 4 report the distributions of single populations obtained from
the numerical sampling. Due to the presence of the expectation
energy constraint, the populations corresponding to different
energy levels are not statistically equivalent. In Figure 3, the
distributions of the population P2, corresponding to E2 ) 1, and
those of the population P43, corresponding to the energy
eigenvalue E43 ) 4, are shown. These calculations refer to a
system composed of n ) 6 spins with energy per spin equal to

ε ) 0.2. Even if the populations are not statistically equivalent,
each marginal distribution has an exponential-like profile like
that in the RPSE. This is generally true for all of the populations
and for all the possible values of the energy parameter ε, with
the notable exception of the ground-state population. As it is
evident from Figure 4, the ground-state population has a
distribution with a peaked profile, at least for not too large
expectation energies. Furthermore, the center of such a distribu-
tion moves toward the unity with a decrease of its width for ε
f 0. Indeed, to attain such a limit, the ground-state population
should increase up to reach its maximum value.

Figure 5 shows the FEEE distribution of the entropy per spin
obtained from the Monte Carlo sampling for different values
of the expectation energy per spin. The upper panel refers to a
system of n ) 6 spins, while the lower panel is the sampling
for n ) 10 spins. These results clearly show that the entropy
distribution is concentrated around a typical value. Furthermore,
the comparison of the distributions for n ) 6 and 10 cases
clearly demonstrates that the enlargement of the system size
produces a narrowing of the entropy distribution, like that for
the RPSE distributions previously examined. The main differ-
ence is that for FEEE, the distribution of the entropy and its
typical value (i.e., the distribution maximum) depends on the
expectation energy.

4. Approximate Distributions from Minimization of the
Information Functional

4.1. Approximate Distribution for the RPSE. An ap-
proximate form of the distribution for the RPSE has been
proposed by Wootters.45 Such a distribution is very useful since
it allows straightforward estimates of the averages in the
ensemble, which result to be rather accurate in the comparison
with the numerical results of the Monte Carlo calculations. We

Figure 3. Marginal distributions of P2, corresponding to the energy
eigenvalue E2 ) 1, and those of P43, corresponding to the energy
eigenvalue E43 ) 4, obtained from the numerical sampling (2 × 105

sampled points) of the FEEE for a system of n ) 6 spins. The
expectation energy per spin is set to ε ) 0.2. The solid lines represent
the approximate distributions discussed in section 4.2.

Figure 4. Marginal distributions of the first population P1 correspond-
ing to the ground state. The calculations refer to the FEEE (2 × 105

sampled points) of a system composed of n ) 6 spins for three different
values of the expectation energy per spin as reported in the figure.

Figure 5. FEEE distributions of the Shannon entropy per spin for a
system composed of n ) 6 (upper panel) and 10 spins (lower panel).
The (normalized) histograms refer to different values of the expectation
energy per spin as reported in the figure.
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shall derive the same approximate distribution by following a
different method based on the information functional, which
can be easily generalized to ensembles different from the RPSE,
like the FEEE, as shown in the following.

The key methodological ingredient of the Wootters (and our)
method is the replacement of the populations, which in the RPSE
should satisfy the normalization constraint, ∑k)1

N Pk ) 1, with a
set of N random variables η ) (η1, η2, ..., ηN), each of them
defined in the domain [0,∞], with a distribution characterized
through the probability density W(η) normalized as

and which allows the determination of the average 〈f(η)〉 of any
function f(η) of the stochastic variables η. The important point
to emphasize is that, in general, variables η do not satisfy the
normalization condition, ∑k)1

N ηk * 1, and therefore, they cannot
be identified with populations. However, the distribution func-
tion W(η) is chosen in such a way that their average is
normalized

Thus, we require that these random variables satisfy ap-
proximately (that is, on average) the condition for the RPSE,
with a posteriori check of the goodness of such an approximation.

The conditions in eqs 26 and 27 do not determine a unique
probability distribution function W(η). The general problem of
the specification of the probability function in the absence of
information for its full characterization is as old as the theory
of probability itself. The “Principle of Insufficient Reason” of
Laplace was an attempt to supply a criterion of choice for the
probability if no other stronger reasons were available. The
development of information theory and statistical inference has
led to the maximum entropy principle, as the rule which permits
determination of the least biased distribution according to our
initial information.46 This principle states that among the infinite
set of functions W(η) which satisfy the given constraints, it is
reasonable to choose the one which minimizes the informational
functional

where I[W] denotes a functional dependence of the information
content I on the distribution W(η). The minimum information
(maximum entropy) principle selects the distribution, being
compatible with the given constraints, which has the maximum
random character in relation to the smoothest dependence of
W(η) on the stochastic variables η.

The minimization of the functional in eq 28 under the
constraints of eqs 26 and 27 is easily performed by means of
the Lagrange multiplier method. The resulting distribution is
factored into identical exponential distributions for all of the
components of the random vector η

In conclusion, the random variables (associated with the
populations) result in being statistically independent, with an
exponential distribution for each variable. In Figure 1, one can
compare these approximate distributions wRPSE(ηk) drawn as
continuous lines with the exact marginal distribution of popula-
tions deriving from the numerical sampling of RPSE. The
convergence of the approximate distribution toward the exact
ones clearly emerges for increasing dimensions of the spin
system.

On the basis of this result, it is interesting to look at the
statistical behavior of the sum X ) ∑k)1

N ηk of the N random
variables η, whose average is unitary, 〈X〉 ) 1, because of the
constraint of eq 27. One can apply the central limit theorem47

to conclude that X is a normally distributed random variable
with a variance decreasing with the dimension N of the Hilbert
space, as one can explicitly derive from the distribution in eq
29

In other words, as N become very large, the condition of
normalization on average, eq 27, becomes effectively a condition
on the normalization of each realization of the set. However,
the exact equivalence is found only in the limit N f ∞.

From the statistical independence of the variables in the
approximate distribution, eq 29, one can also justify the Gaussian
distribution of the entropy as recovered from the numerical
sampling reported in Figure 2. Indeed, if N is large enough,
this is the prediction of the central limit theorem when applied
to the sum of eq 21, which defines the entropy function.
Furthermore, one can directly calculate the average value of
the entropy as

where γ = 0.5772 is the Euler constant. In order to provide
direct evidence of the accuracy of the approximate result of
eq 31 also for small-size systems, in Figure 6, we have
compared it with the exact numerical values of the average
entropy as a function of the number n of spins. Furthermore,

∫ dηW(η) ) ∫0

∞
dη1 ∫0

∞
dη2...∫0

∞
dηNW(η) ) 1

(26)

∑
k)1

N

〈ηk〉 ) 1 (27)

I[W] ) ∫ dηW(η) ln W(η) (28)

WRPSE(η) ) ∏
k)1

N

wRPSE(ηk) wRPSE(ηk) ) Ne-Nηk

(29)

Figure 6. Average entropy per spin as a function of the number of
spins. Circles: numerical sampling of RPSE; dotted line: approximation
of eq 31.

〈(X - 〈X〉)2〉 ) 〈X2〉 - 1 )

∑
k)1

N

〈ηk
2〉 + ∑

k,k'*k

N(N-1)

〈ηkηk'〉 - 1 ) 1
N

(30)

〈S〉 ) N∫0

∞
dηkwRPSE(ηk)ηk ln ηk ) ln N - (1 - γ)

(31)
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by explicitly calculating the second moment of the entropy
distribution, one can shown that at the leading order in N

This is equivalent to proving the typicality of the entropy in
the RPSE, as long as by increasing the dimension of the
Hilbert space, the width of the entropy distribution within
the ensemble, when compared to its average, tends to vanish.

4.2. Approximate Distributions for the FEEE. In order to
obtain the approximate distribution for the FEEE, the minimiza-
tion of the informational functional eq 28 has to be performed
under the additional constraint on the average of the energy
expectation value

Like for the constraint on the population normalization, within
such an approximation, the constraint on the expectation energy
is taken into account in the mean by replacing the populations
Pk in eq 14 with the averages 〈ηk〉 of the stochastic variables.
In the following, we shall assume that the energy eigenvalues
are ordered in magnitude, Ek e Ek+1, and that the origin of the
energy scale is chosen in correspondence of the lowest-energy
eigenvalue, E1 ) 0. The result, by applying the Lagrange
multipliers method, is again a distribution factored in N-
independent exponential distributions

but now, the averages of the random variables depend on the
corresponding energy eigenvalues

The Lagrange parameters λ and µ are implicitly determined by
the following equations

Notice that when the energy expectation value E approaches
the value corresponding to all of the energy levels equally
populated, E* ) ∑k)1

N Ek/N, then these parameters tend to the
limiting values λ f N and µ f 0. Correspondingly, the
population distribution WFEEE(η) tends to the RPSE population
distribution of eq 29.

The distribution of eq 29 for the RPSE and that of eq 34 for
the FEEE are exactly the distributions proposed by Wootters45

on the basis of different types of considerations. An important
feature of these distributions is their factorization into single-
variable distributions whose domains are the entire positive real
axis. Thus, the ensemble average of any function of the quantum
state can be analytically calculated. For example, according to

the approximate distribution of eq 34, the FEEE average entropy
reads

which should be considered as an implicit function of the
expectation energy (or its value per spin ε ) E/n) because of
the constraints of eq 36 for the parameters λ and µ.

However, the comparison between the average entropy
calculated according to eq 37 and the average value obtained
by the numerical sampling of the FEEE distribution of the
entropy for a 10 spin system points out a discrepancy. This is
clearly shown in Figure 7, where the averages of the entropy
per spin obtained from the Monte Carlo sampling of the FEEE
distribution for different values of the expectation energy per
spin ε ) E/n are represented by circles, while the average
entropy calculated according to eq 37 is represented by the
dotted line. The difference between the results of the two
procedures increases as the energy decreases. In particular, eq
37 predicts a negative entropy for low values of the energy per
spin ε, a value which can never be recovered from the definition
of eq 21 for the entropy, whatever the set of populations.

In order to understand the origin of these discrepancies, one
should compare the exact population distributions as obtained
from the Monte Carlo procedure with the approximate ones
previously derived. We have verified that the exponential
distribution given in eq 34 is a good approximation for all of
the populations, except for the ground-state population P1. As
an example, Figure 3 shows the good agreement recovered for
the distributions on the populations P2 and P43 in a particular
situation. On the contrary, no agreement is found for the
distribution on P1 because, as shown in Figure 4, in this case,
the Monte Carlo procedure leads to a distribution with a
maximum which obviously cannot be recovered from the
exponential form of eq 34.

In order to obtain a better approximation, we should take
into account the peculiarity of the distribution on the ground-

σS

〈S〉 =
1

√N
(32)

∑
k)1

N

〈ηk〉Ek ) E (33)

WFEEE(η) ) ∏
k)1

N

wFEEE(ηk)

wFEEE(ηk) ) (λ + µEk)e
-(λ+µEk)ηk (34)

〈ηk〉 ) (λ + µEk)
-1 (35)

∑
k)1

N
1

(λ + µEk)
) 1 ∑

k)1

N Ek

(λ + µEk)
) E (36)

Figure 7. FEEE average entropy per spin as a function of the
expectation energy per spin for a system composed of n ) 10 spins.
The figure displays the average values obtained from Monte Carlo
sampling (circles), the average according to the Wootters approximation
of the distribution of eq 34 (dotted line), and the average according to
the second approximate form of the FEEE eq 42 (continuous line).

〈S〉 ) - ∑
k)1

N ∫0

∞
dηkwFEEE(ηk)ηk ln ηk )

∑
k)1

N ln(λ + µEk)

λ + µEk
- (1 - γ) (37)
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state population. The basic idea is to use again the procedure
of minimization of the information functional of eq 28 but with
a specific restriction on the space of the allowed function for
the distribution on the first variable η1. Then, we introduce a
new probability distribution, denoted as WFEEE,II(η), where the
functional dependence on η̂ ) (η2, ..., ηN) has to be determined
from the minimization of the information functional of eq 28,
while for the first variable η1 (associated with the ground-state
population P1), we impose a well-defined functional form Ga(η1)
even if parametrically dependent on a set of constants a ) (a1,
a2, ...). Thus, the overall probability density is written as

where ŴFEEE,II(η̂) describes the functional dependence on η̂. For
the functional dependence on the first variable, because of the
bell-shaped profiles suggested by the results of Monte Carlo
calculations and reported in Figure 4, we choose a normalized
Gaussian function

specified according to the two parameters a ) (a1,a2) for the
center and the inverse squared width of the distribution. As a
matter of fact, truly Gaussian distributions are recovered from
the Monte Carlo calculations when sufficiently low energy per
spin is considered, as one can perceive from Figure 4.

The procedure employed to determine the distribution of eq
38, which minimizes the information functional of eq 28, is
described in detail in Appendix B, and here, we report only the
final result. For the functional dependence on the variables η̂,
an exponential form is recovered like in the previous ap-
proximation of eq 34

while for the Gaussian distribution of eq 39, the following
relation is derived for its center

and a vanishing value for its width (i.e., 1/a2 ) 0) which
corresponds to a Dirac delta profile. In conclusion, the resulting
probability density is specified as

This second form of the approximate distribution is practically
equivalent to the previous one for all of the populations except
the first one, which is distributed like a Dirac delta at its average
value 〈η1〉 ) a1. Such a distribution can be employed to evaluate
the average entropy

It can be rewritten as an explicit function of the scaled
expectation energy e ) E/N

where the quantities S0 ) ∑k)2
N 1/Ek and F0 ) ∑k)2

N (ln Ek)/Ek

are characteristic properties of the energy spectrum of the
considered system. In Figure 6, such an average entropy per
spin is represented as a continuous line, and a good agreement
is found in the comparison with the numerical sampling of the
exact distribution. In particular, the unphysical negative values
of entropy are avoided.

However, Monte Carlo results point out that the distribution
on P1 has a finite width. Of course this represents a shortcoming
of such an approximation which could be overcome by
introducing more complex profiles for Ga(η1), but at the price
of a much more cumbersome procedure. On the other hand,
we think that there is not strictly a necessity of these further
developments, as long as the approximate distribution of eq 42
leads to accurate enough values for the average entropy.

5. Conclusions

In order to identify the methodologies suitable to statistically
characterize quantum pure states, we have presented an analysis
of the probability distributions which emerge from the geometry
of the Hilbert space. In particular, by using a parametrization
of the wave function in terms of populations and phases, we
have explicitly derived the distributions of these variables
associated with the random pure state ensemble (RPSE) and
with the fixed expectation energy ensemble (FEEE). While the
phase variables are statistically independent and uniformly
distributed, the ensemble probability densities on the populations
are defined in high-dimensional domains with a nontrivial
topology because the populations are not statistically indepen-
dent for the presence of the constraints. On the one hand, we
have characterized such distributions through numerical sam-
pling by using Monte Carlo techniques. On the other hand
analytical approximations valid in the large N limit have been
developed and compared with the numerical results. These
methods allow one to study the marginal distributions of single
populations, as well as those of any function of interest. We
have focused on the Shannon entropy associated with the pure
state of the whole system in the energy representation. An
interesting point which emerges from the study of the ensemble
distribution in the chosen model system composed of n spins
of 1/2 is the following; while the probability distribution of the
populations itself is the broadest one compatible with the
constraints of the considered ensemble, the ensemble distribu-
tions of the observable entropy are, on the contrary, very peaked
functions, and this allows its characterization through their
typical values. Within the statistical framework presented here,
the typicality of the entropy is evidence which does not depend
on the nature of the system; rather, it is a simple consequence
of the high dimensionality of the phase space together with the
structure of the observed function which is defined as a sum of
many terms. For this reason, the tools developed here can be
used to calculate and analyze the typical values of a wide class
of observables, including the expectation value of a generic

WFEEE,II(η) ) Ga(η1)ŴFEEE,II(η̂) (38)

Ga(η1) ) �a2

π
e-(η1-a1)2a2 (39)

ŴFEEE,II(η̂) ) N - 1
E ∏

k)2

N

Ek exp{-(N - 1)Ekηk/E}

(40)

a1 ) 1 - E
N - 1 ∑

k)2

N
1
Ek

(41)

WFEEE,II(η) ) δ(η1 - a1)ŴFEEE,II(η̂) (42)

〈S〉 ) - ∑
k)1

N

〈ηk〉 ln〈ηk〉 - (1 - γ)(1 - 〈η1〉) (43)

〈S〉 ) -(1 - eS0) ln(1 - eS0) - eS0 ln e + eF0 -
(1 - γ)eS0 (44)
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operator or the elements of the reduced density matrix of a
subsystem. The connection between the behavior of such typical
values and the relevant constraints which define the ensembles
are interesting issues which will be considered elsewhere.
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Appendix

A. Metric Tensors and Volume Elements in the Ensemble
Representative Spaces. Let us first consider the space R2N and
perform the change of representation from the Euclidean
coordinates x ≡ (Re c, Im c) to the generalized coordinates y
) (P,R) determined by populations and phases. The Jacobian
matrix of the following transformation

for i ) 1, 2, ..., N is block diagonal and the ith block reads

Therefore, according to eq 9, the metric tensor in the y ) (P,R)
representation is diagonal, with components

from which one derives the volume element in the new set of
coordinates

By imposing the constraint of eq 13, which can be used to
determine the last population as a function of the others
considered as independent variables

we now derive the geometrical measure for the RPSE described
by coordinates z ) (P1, P2, ..., PN-1, R1, R2, ..., RN). According
to the prescription in eq 10, the metric tensor gij(z) induced in
the surface results in being partitioned into two blocks, the block
on the phases which is diagonal

and the block on the populations

In order to calculate the determinant of the metric tensor g(z)
) det(gij(z)), we can employ the following property of deter-
minants. Let us suppose that A is an invertible square matrix
and u, V are two column vectors; then, it can be verified48 that

By identifying A with the diagonal matrix whose entries are
1/(4Pi), V with the vector whose elements are all unitary, and
the elements of u with the second term on the rhs of eq 51, we
find the following contribution for the population block

while the determinant of the diagonal phase block is directly
recovered from eq 50.

Therefore, the overall determinant of the metric tensor is simply

By taking into account that the surface of the hypersphere in
eq 4 is 2πN/(N - 1)!, one finally derives the probability density
eq 16 for the RPSE.

The possible states for the FEEE must satisfy the constraints
of eqs 13 and 14, which can be employed to determine the last
two populations as a function of the remaining ones

and these equations provide the parametric representation of
the FEEE hypersurface. Thus, according to eq 10, the metric
tensor on the populations is given as

x2i-1 ) √Pi cos Ri x2i ) √Pi sin Ri (45)

(∂x2i-1

∂Pi

∂x2i-1

∂Ri

∂x2i

∂Pi

∂x2i

∂Ri

) ) ((2√Pi)
-1 cos Ri -√Pi sin Ri

(2√Pi)
-1 sin Ri √Pi cos Ri

)
(46)

gPiPi
) 1

4Pi
gRiRi

) Pi (47)

dV ) √|g(P,R)|dPdR ) 2-NdP1...dPNdR1...dRN

(48)

PN ) 1 - ∑
i)1

N-1

Pi (49)

gRiRi
) Pi for i * N gRNRN

) 1 - ∑
i)1

N-1

Pi

(50)

gPiPj
) 1

4Pi
δij +

1

4(1 - ∑
k)1

N-1

Pk)

i, j ) 1 ÷ (N - 1)

(51)

det(A + uVT) ) (1 + VTA-1u) det(A) (52)

det(gPiPj
) ) 1

4N-1

1

1 - ∑
k

N-1

Pk

∏
k)1

N-1
1
Pk

(53)

det(gRiRj
) ) (1 - ∑

k

N-1

Pk) ∏
k)1

N-1

Pk (54)

g(z) ) det(gPiPj
) det(gRiRj

) ) 1

4N-1
(55)

PN ) f1(P1, ..., PN-2) )
E

EN - EN-1
-

∑
i)1

N-2 Ei

EN - EN-1
Pi +

Ek′

EN - EN-1
( ∑

i)1

N-2

Pi - 1)
PN-1 ) f2(P1, ..., PN-2) ) 1 - ∑

i)1

N-2

Pi - f1(P1, ..., PN-2)

(56)

gPjPt
) 1

4Pj
δjt +

1
4f1

∂f1

∂Pj

∂f1

∂Pt
+ 1

4f2

∂f2

∂Pj

∂f2

∂Pt
(57)
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Again, we can calculate the determinant of this matrix by using
a general property of the determinant48

where A is a nonsingular square matrix and U is a rectangular
matrix with the same number of rows of A. By identifying A
with the diagonal matrix with entries Aij ) (1/4Pj)δij and U with
a (N - 2) × 2 matrix with entries Uij ) [1/(4fj)1/2](∂fj/∂Pi), we
get

with the following coefficients

By employing also the determinant of the phase block (eq 54),
finally we derive the FEEE volume element

from which the FEEE probability density (eq 17) follows
directly.

Appendix

B. Minimization of the Information Functional. The
information functional eq 28 with the distribution function eq
38 can be written as

where Ŵ(η̂) ) ŴFEEE,II(η̂). The constraints which have to be
satisfied are the normalization of the average populations, eq
27, a fixed value of the average expectation energy, eq 33, and
the normalization of the probability density

By introducing suitable Lagrange multipliers λ, µ, and κ, the
functional to be minimized reads

where F([Ŵ],a) has to be considered as a functional of Ŵ(η̂)
and an ordinary function of the parameters a ) (a1,a2). The
minimization thus requires setting to zero the following
derivatives

From eq 67, one obtains

which, by taking into account the normalization condition of
eq 64, can be written in the normalized form

so leading to the following averages

Lagrange multipliers λ and µ are calculated by evaluating
according to eq 71 the constraint (eq 27) of population
normalization and the constraint (eq 33) of expectation energy

while parameters a ) (a1,a2) are calculated from the solution
of eq 66. Thus, by using a scale of the energy such that E1 )
0, the equations to be solved for the specification of the
parameters λ, µ, a1, and a2 are

det(A + UU†) ) det(I + U†A-1U) det(A) (58)

det(gPiPj
) ) ((1 + R11)(1 + R22) - R12

2 ) ∏
j)1

N-2
1

4Pj

(59)

aj )
EN-1 - Ej

EN - EN-1
(60)

R11 ) 1
f1

∑
j)1

N-2

Pj aj
2, R22 ) 1

f2
∑
j)1

N-2

Pj (1 + aj)2,

R12 ) 1

√f2 f1

∑
j)1

N-2

Pj aj(1 + aj) (61)

dV ) 1

2N-2[ ∑
j)1

N-2

Pj(1 + aj)aj - ( E - EN-1

EN - EN-1
)2

+

( E - EN-1

EN - EN-1
)]1/2

dP1...dPN-2dR1...dRN (62)

I[WFEEE,II] ) ∫ dη1Ga(η1) ln Ga(η1) +

∫ dη̂Ŵ(η̂) ln Ŵ(η̂) ) I1(a) + Î[Ŵ] (63)

∫ dη̂Ŵ(η̂) ) 1 (64)

F([Ŵ], a) ) I1(a) + Î[Ŵ] - λ( ∑
k

〈ηk〉 - 1) -

µ( ∑
k

〈ηk〉Ek - E) - κ(∫ Ŵ(η̂)dη̂ - 1) ) I1(a) -

a1(λ + µE1) + ∫ Ŵ(η̂)dη̂[ln Ŵ(η̂) - λ ∑
k*1

ηk -

µ ∑
k*1

Ekηk - κ] + λ + µE + κ (65)

∂F
∂am

) ∂

∂am
[I1(a) - a1(λ + µE1)] ) 0 for m ) 1, 2

(66)

δF

δŴ(η̂)
) -ln Ŵ(η̂) - 1 - λ ∑

k*1

ηk - µ ∑
k*1

Ekηk - κ ) 0

(67)

Ŵ(η̂) ) exp[-(1 + κ) - λ ∑
k*1

ηk - µ ∑
k*1

Ekηk]

(68)

Ŵ(η̂) ) ∏
k*1

N

(λ + µEk)e
-(λ+µEk)ηk (69)

〈ηk〉 )
1

(λ + µEk)
k * 1 (70)

a1 + ∑
k*1

N
1

(λ + µEk)
) 1 E1a1 + ∑

k*1

N Ek

(λ + µEk)
) E

(71)
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where z ) λ/µ. This system of equations can be solved
analytically, deriving the following values for the parameters

which lead to the distribution specified by eqs 42 and 40.
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(26) Życzkowski, K.; Sommers, H. J. J. Phys. A 2001, 34, 7111.
(27) Bartsch, C.; Gemmer, J. Phys. ReV. Lett. 2009, 102, 110403.
(28) Brody, D. C.; Hook, D. W.; Hughston, L. P. Proc. R. Soc. London,

Ser. A 2007, 463, 2021.
(29) Bender, C. M.; Brody, D. C.; Hook, D. W. J. Phys. A: Math. Gen.

2005, 38, L607.
(30) Naudts, J.; Van der Straeten, E. J. Stat. Mech. 2006, P06015.
(31) Dubrovin, B. A.; Fomenko, A. T.; Novikov, S. P. Modern Geometry

-Methods and Applications, Part I; Springer-Verlag: Berlin, Germany, 1985.
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